Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Hypotheses ; 108: 42-45, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29055398

RESUMO

Henoch-Schönlein Purpura (HSP, IgA vasculitis) is an immunoglobulin A (IgA) mediated disorder characterized by systemic vasculitis with variable presentation, frequently affecting the skin, mucous membrane, joints, kidneys, and rarely lungs and the central nervous system. Interestingly, enhanced production of interleukin-8 (IL-8) levels are found during active disease and increased levels have been reported in supernatants from human umbilical venous endothelial cells after stimulation with sera from patients affected by HSP. While corticosteroid therapy is currently the recommended treatment for HSP, dapsone, an anti-leprosy agent, has also recently been suggested to have therapeutic efficacy due to its ability to suppress IL-8. Moreover, in addition to IL-8 suppression, dapsone has been reported to exert various anti-inflammatory effects by inhibiting the generation of toxic free radicals, myeloperoxidase mediated halogenation that converts H2O2 to HOCl, leukocyte chemotaxis, production of tumor necrosis factor, and other anti-inflammatory molecules. This review aims to provide a solid hypothesis for the pathogenesis of vasculitis in HSP. Moreover, we highlight potential mechanistic actions of dapsone in hopes that dapsone may be considered as an alternative viable treatment for patients affected by HSP.


Assuntos
Dapsona/uso terapêutico , Vasculite por IgA/tratamento farmacológico , Corticosteroides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Quimiotaxia , Citocinas/metabolismo , Radicais Livres , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/química , Imunoglobulina A/imunologia , Interleucina-8/metabolismo , Leucócitos/citologia , Modelos Biológicos , Neutrófilos/metabolismo , Oxigênio/química , Peroxidase/metabolismo , Vasculite/tratamento farmacológico
2.
PLoS One ; 11(12): e0168276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959965

RESUMO

BACKGROUND: Genetic variation in the Laccase (multicopper oxidoreductase) domain-containing 1 (LACC1) gene has been shown to affect the risk of Crohn's disease, leprosy and, more recently, ulcerative colitis and juvenile idiopathic arthritis. LACC1 function appears to promote fatty-acid oxidation, with concomitant inflammasome activation, reactive oxygen species production, and anti-bacterial responses in macrophages. We sought to contribute to elucidating LACC1 biological function by extensive characterization of its expression in human tissues and cells, and through preliminary analyses of the regulatory mechanisms driving such expression. METHODS: We implemented Western blot, quantitative real-time PCR, immunofluorescence microscopy, and flow cytometry analyses to investigate fatty acid metabolism-immune nexus (FAMIN; the LACC1 encoded protein) expression in subcellular compartments, cell lines and relevant human tissues. Gene-set enrichment analyses were performed to initially investigate modulatory mechanisms of LACC1 expression. A small-interference RNA knockdown in vitro model system was used to study the effect of FAMIN depletion on peroxisome function. RESULTS: FAMIN expression was detected in macrophage-differentiated THP-1 cells and several human tissues, being highest in neutrophils, monocytes/macrophages, myeloid and plasmacytoid dendritic cells among peripheral blood cells. Subcellular co-localization was exclusively confined to peroxisomes, with some additional positivity for organelle endomembrane structures. LACC1 co-expression signatures were enriched for genes involved in peroxisome proliferator-activated receptors (PPAR) signaling pathways, and PPAR ligands downregulated FAMIN expression in in vitro model systems. CONCLUSION: FAMIN is a peroxisome-associated protein with primary role(s) in macrophages and other immune cells, where its metabolic functions may be modulated by PPAR signaling events. However, the precise molecular mechanisms through which FAMIN exerts its biological effects in immune cells remain to be elucidated.


Assuntos
Doença de Crohn/genética , Predisposição Genética para Doença , Proteínas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares/citologia , Ligantes , Macrófagos/citologia , Macrófagos/metabolismo , Oxigênio/química , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Biomacromolecules ; 13(8): 2570-7, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22804452

RESUMO

Barrier performance and retrostructural modeling of the macromolecular components demonstrate new design principles for film formulations based on renewable wood hydrolysates. Hardwood hydrolysates, which contain a fair share of lignin coexisting with poly- and oligosaccharides, offer excellent oxygen-barrier performance. A Hansen solubility parameter (HSP) model has been developed to convert the complex hydrolysate structural compositions into relevant matrix oxygen-permeability data allowing a systematic prediction of how the biomass should be formulated to generate an efficient barrier. HSP modeling suggests that the molecular packing ability plays a key role in the barrier performance. The actual size and distribution of free volume holes in the matrices were quantified in the subnanometer scale with Positron annihilation lifetime spectroscopy (PALS) verifying the affinity-driven assembly of macromolecular segments in a densely packed morphology and regulating the diffusion of small permeants through the matrix. The model is general and can be adapted to determine the macromolecular affinities of any hydrolysate biomass based on chemical composition.


Assuntos
Betula/química , Manufaturas , Modelos Químicos , Extratos Vegetais/química , Polissacarídeos/química , Madeira/química , Algoritmos , Biomassa , Configuração de Carboidratos , Sequência de Carboidratos , Hidrólise , Lignina/química , Dados de Sequência Molecular , Oxigênio/química , Permeabilidade , Extratos Vegetais/isolamento & purificação , Polietilenotereftalatos/química , Polissacarídeos/isolamento & purificação , Solubilidade
4.
Biomacromolecules ; 12(4): 1355-62, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21366288

RESUMO

Biomass is converted to oxygen barriers through a conceptually unconventional approach involving the preservation of the biomass native interactions and macromolecular components and enhancing the effect by created interactions with a co-component. A combined calculation/assessment model is elaborated to understand, quantify, and predict which compositions that provide an intermolecular affinity high enough to mediate the molecular packing needed to create a functioning barrier. The biomass used is a wood hydrolysate, a polysaccharide-rich but not highly refined mixture where a fair amount of the native intermolecular and intramolecular hemicelluloses-lignin interactions are purposely preserved, resulting in barriers with very low oxygen permeabilities (OP) both at 50 and 80% relative humidity and considerably lower OPs than coatings based on the corresponding highly purified spruce hemicellulose, O-acetyl galactoglucomannan (AcGGM). The component interactions and mutual affinities effectively mediate an immobilization of the chain segments in a dense disordered structure, modeled through the Hansen's solubility parameter concept and quantified on the nanolength scale by positron annihilation lifetime spectrum (PALS).


Assuntos
Madeira , Biomassa , Hidrólise , Lignina/química , Oxigênio/química , Polissacarídeos/química , Termogravimetria
5.
J Phys Condens Matter ; 22(33): 334222, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21386512

RESUMO

Surface composition plays an important role in carbon nanotube dispersibility in different environments. Indeed, it determines the choice of dispersion medium. In this paper the effect of oxidation on the dispersion of HiPCO single-walled carbon nanotubes (SWNTs) in N-methyl-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-dodecyl-pyrrolidinone (N12P) and cyclohexyl-pyrrolidinone (CHP) was systematically studied. During the oxidation process, similar amounts of carboxylic acid and phenolic groups were introduced to mostly already existing defects. For each solvent the dispersion limits and the absorption coefficients were estimated by optical absorption analysis over a range of SWNT concentrations. The presence of acid oxygenated groups increased SWNT dispersibility in NMP, DMF and DMA, but decreased in N12P and CHP. The absorption coefficients, however, decreased for all solvents after oxidation, reflecting the weakening of the effective transition dipole of the π-π transition with even limited extension functionalization and solvent interaction. The analysis of the results in terms of Hansen and Flory-Huggins solubility parameters evidenced the influence of dipolar interactions and hydrogen bonding on the dispersibility of oxidized SWNTs.


Assuntos
Amidas/química , Coloides/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Oxigênio/química , Solventes/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
Biochem Biophys Res Commun ; 357(3): 809-14, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17451651

RESUMO

Mycobacterium leprae truncated hemoglobin O (trHbO) protects from nitrosative stress and sustains mycobacterial respiration. Here, kinetics of M. leprae trHbO(II)-NO denitrosylation and of O(2)-mediated oxidation of M. leprae trHbO(II)-NO are reported. Values of the first-order rate constant for *NO dissociation from M. leprae trHbO(II)-NO (k(off)) and of the first-order rate constant for O(2)-mediated oxidation of M. leprae trHbO(II)-NO (h) are 1.3 x 10(-4) s(-1) and 1.2 x 10(-4) s(-1), respectively. The coincidence of values of k(off) and h suggests that O(2)-mediated oxidation of M. leprae trHbO(II)-NO occurs with a reaction mechanism in which *NO, that is initially bound to heme(II), is displaced by O(2) but may stay trapped in a protein cavity(ies) close to heme(II). Next, M. leprae trHbO(II)-O(2) reacts with *NO giving the transient Fe(III)-OONO species preceding the formation of the final product M. leprae trHbO(III). *NO dissociation from heme(II)-NO represents the rate limiting step for O(2)-mediated oxidation of M. leprae trHbO(II)-NO.


Assuntos
Proteínas de Bactérias/química , Hemoglobinas/química , Óxido Nítrico/química , Oxigênio/química , Proteínas de Bactérias/genética , Monóxido de Carbono/química , Compostos Ferrosos/química , Heme/química , Hemoglobinas/genética , Cinética , Modelos Químicos , Oxirredução , Proteínas Recombinantes/química , Hemoglobinas Truncadas
7.
J Phys Chem B ; 111(12): 3151-66, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17388466

RESUMO

It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of temperatures between 250 and 650 K. The magnitudes of the calculated solubilities agree well with experimental results, and the trends with temperature are predicted correctly. The HCE method is used to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow more closely the experimental trend of permeabilities, both ranging over 4 orders of magnitude. For oxygen, the calculated values do not follow entirely the experimental trend of permeabilities, most probably because at this temperature some of the polymers are in the glassy regime and thus are diffusion dominated. Our study also concludes large confidence limits are associated with the calculated Henry's constants. By investigating several factors (terminal ends of the polymer chains, void distribution, etc.), we conclude that the large confidence limits are intimately related to the polymer's conformational changes caused by thermal fluctuations and have to be regarded--at least at microscale--as a characteristic of each polymer and the nature of its interaction with the solute. Reducing the mobility of the polymer matrix as well as controlling the distribution of the free (occupiable) volume would act as mechanisms toward lowering both the gas solubility and the diffusion coefficients.


Assuntos
Gases/química , Membranas Artificiais , Adsorção , Fenômenos Químicos , Físico-Química , Difusão , Modelos Moleculares , Modelos Estatísticos , Método de Monte Carlo , Oxigênio/química , Permeabilidade , Polímeros , Solubilidade , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA